53 research outputs found

    On the Usefulness of Deep Ensemble Diversity for Out-of-Distribution Detection

    Full text link
    The ability to detect Out-of-Distribution (OOD) data is important in safety-critical applications of deep learning. The aim is to separate In-Distribution (ID) data drawn from the training distribution from OOD data using a measure of uncertainty extracted from a deep neural network. Deep Ensembles are a well-established method of improving the quality of uncertainty estimates produced by deep neural networks, and have been shown to have superior OOD detection performance compared to single models. An existing intuition in the literature is that the diversity of Deep Ensemble predictions indicates distributional shift, and so measures of diversity such as Mutual Information (MI) should be used for OOD detection. We show experimentally that this intuition is not valid on ImageNet-scale OOD detection -- using MI leads to 30-40% worse %FPR@95 compared to single-model entropy on some OOD datasets. We suggest an alternative explanation for Deep Ensembles' better OOD detection performance -- OOD detection is binary classification and we are ensembling diverse classifiers. As such we show that practically, even better OOD detection performance can be achieved for Deep Ensembles by averaging task-specific detection scores such as Energy over the ensemble.Comment: Workshop on Uncertainty Quantification for Computer Vision, ECCV 202

    Mixed-TD: Efficient Neural Network Accelerator with Layer-Specific Tensor Decomposition

    Full text link
    Neural Network designs are quite diverse, from VGG-style to ResNet-style, and from Convolutional Neural Networks to Transformers. Towards the design of efficient accelerators, many works have adopted a dataflow-based, inter-layer pipelined architecture, with a customised hardware towards each layer, achieving ultra high throughput and low latency. The deployment of neural networks to such dataflow architecture accelerators is usually hindered by the available on-chip memory as it is desirable to preload the weights of neural networks on-chip to maximise the system performance. To address this, networks are usually compressed before the deployment through methods such as pruning, quantization and tensor decomposition. In this paper, a framework for mapping CNNs onto FPGAs based on a novel tensor decomposition method called Mixed-TD is proposed. The proposed method applies layer-specific Singular Value Decomposition (SVD) and Canonical Polyadic Decomposition (CPD) in a mixed manner, achieving 1.73x to 10.29x throughput per DSP to state-of-the-art CNNs. Our work is open-sourced: https://github.com/Yu-Zhewen/Mixed-TDComment: accepted by FPL202

    Window-Based Early-Exit Cascades for Uncertainty Estimation: When Deep Ensembles are More Efficient than Single Models

    Get PDF
    Deep Ensembles are a simple, reliable, and effective method of improving both the predictive performance and uncertainty estimates of deep learning approaches. However, they are widely criticised as being computationally expensive, due to the need to deploy multiple independent models. Recent work has challenged this view, showing that for predictive accuracy, ensembles can be more computationally efficient (at inference) than scaling single models within an architecture family. This is achieved by cascading ensemble members via an early-exit approach. In this work, we investigate extending these efficiency gains to tasks related to uncertainty estimation. As many such tasks, e.g. selective classification, are binary classification, our key novel insight is to only pass samples within a window close to the binary decision boundary to later cascade stages. Experiments on ImageNet-scale data across a number of network architectures and uncertainty tasks show that the proposed window-based early-exit approach is able to achieve a superior uncertainty-computation trade-off compared to scaling single models. For example, a cascaded EfficientNet-B2 ensemble is able to achieve similar coverage at 5% risk as a single EfficientNet-B4 with <30% the number of MACs. We also find that cascades/ensembles give more reliable improvements on OOD data vs scaling models up. Code for this work is available at: https://github.com/Guoxoug/window-early-exit

    Augmenting Softmax Information for Selective Classification with Out-of-Distribution Data

    Get PDF
    Detecting out-of-distribution (OOD) data is a task that is receiving an increasing amount of research attention in the domain of deep learning for computer vision. However, the performance of detection methods is generally evaluated on the task in isolation, rather than also considering potential downstream tasks in tandem. In this work, we examine selective classification in the presence of OOD data (SCOD). That is to say, the motivation for detecting OOD samples is to reject them so their impact on the quality of predictions is reduced. We show under this task specification, that existing post-hoc methods perform quite differently compared to when evaluated only on OOD detection. This is because it is no longer an issue to conflate in-distribution (ID) data with OOD data if the ID data is going to be misclassified. However, the conflation within ID data of correct and incorrect predictions becomes undesirable. We also propose a novel method for SCOD, Softmax Information Retaining Combination (SIRC), that augments softmax-based confidence scores with feature-agnostic information such that their ability to identify OOD samples is improved without sacrificing separation between correct and incorrect ID predictions. Experiments on a wide variety of ImageNet-scale datasets and convolutional neural network architectures show that SIRC is able to consistently match or outperform the baseline for SCOD, whilst existing OOD detection methods fail to do so

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    Approximate FPGA-based LSTMs under Computation Time Constraints

    Full text link
    Recurrent Neural Networks and in particular Long Short-Term Memory (LSTM) networks have demonstrated state-of-the-art accuracy in several emerging Artificial Intelligence tasks. However, the models are becoming increasingly demanding in terms of computational and memory load. Emerging latency-sensitive applications including mobile robots and autonomous vehicles often operate under stringent computation time constraints. In this paper, we address the challenge of deploying computationally demanding LSTMs at a constrained time budget by introducing an approximate computing scheme that combines iterative low-rank compression and pruning, along with a novel FPGA-based LSTM architecture. Combined in an end-to-end framework, the approximation method's parameters are optimised and the architecture is configured to address the problem of high-performance LSTM execution in time-constrained applications. Quantitative evaluation on a real-life image captioning application indicates that the proposed methods required up to 6.5x less time to achieve the same application-level accuracy compared to a baseline method, while achieving an average of 25x higher accuracy under the same computation time constraints.Comment: Accepted at the 14th International Symposium in Applied Reconfigurable Computing (ARC) 201
    • …
    corecore